

From CoBrato iPhone and Vision Pro

Sorin Cismaș

Ro-Micro | Notices and Disclaimers

Any views or opinions are solely those of the author and all information presented is based on publicly available information that does not contain any proprietary or confidential information and does not infringe copyright or any other legal rights.

Ro-Micro | Microprocessor Evolution in 52 years

Processor	Launch	Discount.	Transistor	Clock	Technology	Pins	Data Bits	Addr. B
Intel C4004	Nov. 1971	1981	2,300	0.750 MHz	10 µm	16	4	12
Intel C8008	Apr. 1972	1983	3,500	0.800 MHz	10 µm	18	8	14
Intel 8080	Apr. 1974	1990	4,500	3.125 MHz	6 µm	40	8	16
Motorola 6800	1974		4,100	2.000 MHz	8 µm	40	8	16
MOS Tech 6502	1975		3,510	3.000 MHz	8 µm	40	8	16
Xilog Z80	Jul. 1976	2024	8,500	8.000 MHz	$4 \mu m$	40	8	16
Intel 8086	1978	1998	29,000	10.000 MHz	3 µm	40	16	20
Apple M3 Max	Oct. 2023		92 x 10^9	4.050 GHz	3 nm	thousands	many	many

Feature	Intel 4004	Apple M3 Max	Ratio
Cores	1	12P + 4E + 40GPU (x128 ALUs) + 16NE (x256 MACs)	9,232
Transistors	2,300	92,000,000	40,000,000
Clock	750 KHz	4.05 GHz	5,400
IPC	1/8	8	64
Geometry	10 µm	3 nm	3,333
Memory Size	4 KB	128 GB	33,554,432
Memory B/W	0.1 MB/sec	409.6 GB/sec	4,096,000
Media Engines	0	Video Codecs, ProRes, ISP, Pixel Processors	infinite

	t	S	5	
			_	
)				
)				

Moore's Law: The number of transistors on microchips doubles every two years Our World

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

Transistor co	ount				
50,000,000,000					
10.000.000.000					
5,000,000,000					
3,000,000,000					
1,000,000,000					
500,000,000					
100.000.000					IT
50,000,000					Pen
, , ,					Pentium 4 V Pentium II Mobile
10,000,000					AM
5,000,000					Dantium Dra
5,000,000					Pentium Proventium Pentium AMD K5
					SA-110
1,000,000				Intel 80486	•R4000
500,000			TI Explorer's 32 Lisp machine	2-bit chip◆	ARM700
		ا Motorola (ntel 80386	Intel 1960	ARM 3
100,000	N 4 a b a ra b a	Intel-8	30286	DEC. Multi	WRL Titan
50,000	1×100001a 68000	, «	Intel 80186 -		
	Intel 8086� 🔶	Intel 8088	•	ARM 2	ARM 6
10,000	Motorola Ms 1000 Zilog Z80 6809	٠	WDC 65C816	ix	
5,000	RCA 1802	WĎC 65C02	11040	510	
Inte	1 8008 Motorola 4502 Technolog	ÿ			
1.000 Inte	4004 6800 0302				
1	2 12 1A 16 18	00 of		00 00	$q \rho q \lambda q \lambda q b$
21	2, 2, 2, 2, 2	, , , , , , , , , , , , , , , , , , ,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Data source: Wikiped	ia (wikipedia.org/wiki/Tran	nsistor_(count)	rear in Wi	nich the microchip
SurvonunData.org		are pros	sicoo agall	IST THE MOL	ia stargest problems.

Ro

Ro-Micro | Cost per transistor has flattened

Ro-Micro | Dennard Scaling breaks down in 2006

As transistors get smaller, their power density stays constant, so that the power use stays in proportion with area; both voltage and current scale (downward) with length.

Performance increases only by adding more cores or by architectural improvements.

FIGURE 1: The Dennard scaling failed around the middle of the 2000s [24].

Ro-Micro | From Intel C4004 to Apple M3 Max

- Technology has evolved a lot, a few orders of magnitude over the last 52 years
- The underlying principles and functions are the same: ALUs, Registers, Memories, Interconnect, Clocks, I/Os
- Divide and Conquer: Hierarchical Approach, Parametrizable Designs, and Reuse
- Architecture and Microarchitecture first: determine use cases, data flow, performance and B/W requirements
- SOCs are huge, but they consists of building blocks with local optimizations
- Data and code compression are heavily used, lossless and lossy

Revolutionary dual-chip performance.

A unique dual-chip design enables the spatial experiences on Apple Vision Pro. The powerful M2 chip simultaneously runs visionOS, executes advanced computer vision algorithms, and delivers stunning graphics, all with incredible efficiency. And the brand-new R1 chip is specifically dedicated to process input from the cameras, sensors, and microphones, streaming images to the displays within 12 milliseconds — for a virtually lag-free, real-time view of the world.

Ro-Micro | State of the Microprocessor

- ISA (Instruction Set Architecture) is not that relevant as it was considered in the past
 - x86, MIPS, SPARC, Motorola 68000, PowerPC, ARM, RISC-V
- Market needs, good management, and execution are more important
 - NVDA (Nvidia), APPL (Apple), AVGO (Broadcom), TSMC vs. INTC (Intel) and many others
- Hardware needs to be fast and simple; Firmware controls the operation and dependencies
- Compiler and tool chain are essential
- For too long industry has relied on Moore's Law
- Like any exponential law, it had to end at some point; it did in 2006
- Like any problem, it brings opportunities
- We are witnessing a Computer Architecture Renaissance

Ro-Micro | What's Next for Microprocessors

- Integration in the past (single chip) -> Disintegration in the future (chiplets)
- Power Consumption is a big challenge
- Al contributes to it; it is a brute force solution that is not sustainable
- Industry needs to do more with less (higher performance with lower power)

- Higher Level of Abstraction
- **Domain Specific Processors**
- Preserve Data Locality (Data Movement is a lot more costly than Computation)
- Function based Programming
- Hierarchical Caching
- Processor Chaining to minimize access to Memory

Ro-Micro | Technology and Industry Drivers

- It's all about Disruption
- Semiconductor Technology (Process) Drivers
 - IBM, Intel, Samsung, TSMC
- Game Consoles

- Atari, Sega, Nintendo, Gaming PC, Sony PlayStation, X-Box, Mobile Phones, Tablets

Product Drivers

– PC (Wintel), Digital Still Camera (Sundisk – George Samachiṣă), Mobile (Apple), Al (Nvidia – Jensen Huang)

Media Delivery

- Tapes, Cassettes, VHS & Beta, CDs, Video CD, LaserDisc, DVD, Blu-ray Disc (last physical media support) -> Streaming

Industry Disrupters

- Founders (they built Silicon Valley): HP, Apple (before 1990), Intel, Microsoft, Cisco, Qualcomm
- .com: Amazon, EBay, Yahoo
- Social Media: Google, Facebook, Instagram, Byte Dance (Tik-Tok)
- Latest Tech: Netflix, Apple (after 2007), Tesla, Broadcom (Avago), Microsoft (OpenAI), Nvidia

- Pioneers: Shockley Semiconductor Laboratory, Fairchild (Traitorous eight), Zilog, Digital Research (Gary Kildall)

Ro-Micro | Technology Evolution

Latest Trends

- Own-> Rent, Physical -> Virtual or Artificial (Second Life, Social Media, Metaverse, Robots, AI)

Most Companies and Venture Capitalists have a Herd Mentality

- Disrupters and trendsetters are in general contrarians; they don't go with the herd, but find their own path
- Biggest Miss was the Consumers Market which Apple took advantage of

Al is a bubble, similar to .com

- A lot of capital will be wasted, but some major companies will emerge
- All is the ultimate copycat that enables Copyright Infringement and Intelectual Property Appropriation
- Humans will not be replaced by Robots run by AI (see Federico's talk)

Follower vs. Leaders

- Don't fight the trend, understand it, find Achilles heel of entrenched players, and disrupt the status quo

High Tech and Silicon Valley

- Are responsible for most of the economic growth in the last few decades
- But are ruthless environments
- Only 10% of start-ups succeed and less than 1% are home runs
- Andy Grove: Only the paranoid survive